Role of neuronal NO synthase in regulating vascular superoxide levels and mitogen-activated protein kinase phosphorylation.
نویسندگان
چکیده
AIMS The present study is designed to investigate the role of neuronal nitric oxide synthase (nNOS) in the regulation of vascular mitogen-activated protein kinase (MAPK) activity under basal and angiotensin II (Ang II)-stimulated conditions. METHODS AND RESULTS Incubation with a potent nNOS inhibitor (L-VNIO) significantly increased superoxide (O2(-)) levels, with increased MAPK phosphorylation, in isolated aorta and vascular smooth muscle cells (VSMCs) from wild-type mice. Both increases were inhibited by the superoxide dismutase mimetic, tempol, but not by the peroxynitrite scavenger, FeTPPS. The levels of O2(-) and MAPK phosphorylation were higher in aorta from nNOS(-/-) mice than from wild-type mice. These parameters were suppressed by tempol and oxypurinal (a xanthine oxidase inhibitor). In isolated VSMCs or aorta from wild-type mice, Ang II stimulation markedly increased the levels of O2(-) and MAPK phosphorylation. L-VNIO significantly reduced Ang II-induced increases of these parameters. Apocynin, an NAD(P)H oxidase inhibitor, further inhibited Ang II-induced increases of these parameters compared with the L-VNIO-treated group. FeTPPS did not suppress the Ang II-induced increase of O2(-) levels, but markedly inhibited Ang II-induced MAPK phosphorylation. In contrast to the wild-type, in isolated aorta or VSMCs from nNOS(-/-) mice, Ang II failed to increase O2(-) levels and MAPK phosphorylation. CONCLUSION Under basal conditions, nNOS-derived NO acting as antioxidant reduces O2(-) accumulation and suppresses vascular MAPK phosphorylation. Under Ang II-stimulated conditions, NAD(P)H oxidase-derived O2(-), inducing nNOS uncoupling, potentiates the Ang II-induced increase of O2(-) generation. The generated O2(-) may react with NO to form peroxynitrite (ONOO(-)). Both O2(-) and ONOO(-) participate in Ang II-induced activation of vascular MAPK.
منابع مشابه
Anti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells
Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes. This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...
متن کاملAnti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells
Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes. This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...
متن کاملIranian crack induces hepatic injury through mitogen-activated protein kinase pathway in the liver of Wistar rat
Objective(s): Iranian crack (IC) is a heroin-based substance manifesting various pathologic side effects. Herein, we aimed to investigate the mechanism of IC-induced liver injuries in Wistar rats. Materials and Methods: Twenty male Wistar rats were randomly divided into two groups: control, and IC (0.9 mg/kg/day/IP, for 30 days). Mitochondrial reactive oxygen species (ROS) production was measur...
متن کاملThe Implication of Androgens in the Presence of Protein Kinase C to Repair Alzheimer’s Disease-Induced Cognitive Dysfunction
Aging, as a major risk factor of memory deficiency, affects neural signaling pathways in hippocampus. In particular, age-dependent androgens deficiency causes cognitive impairments. Several enzymes like protein kinase C (PKC) are involved in memory deficiency. Indeed, PKC regulatory process mediates α-secretase activation to cleave APP in β-amyloid cascade and tau proteins phosphorylation mecha...
متن کاملInvolvement of endogenous nitric oxide in angiotensin II-induced activation of vascular mitogen-activated protein kinases.
Angiotensin II (ANG II) is a powerful activator of mitogen-activated protein (MAP) kinase cascades in cardiovascular tissues through a redox-sensitive mechanism. Nitric oxide (NO) is considered to antagonize the vasoconstrictive and proarteriosclerotic actions of ANG II. However, the role of endogenous NO in ANG II-induced redox-sensitive signal transduction is not yet clear. In this study usin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cardiovascular research
دوره 81 2 شماره
صفحات -
تاریخ انتشار 2009